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Derivatives of Whittaker Functions WK, 1/2 and MK, 1/2 
with Respect to Order K 

By Bernard J. Laurenzi 

Abstract. The Whittaker function derivatives [OWs,l/2/OKIX.. and [OMK,1/024CK.n which 
arise in calculations involving the hydrogen atom's generalized Green's functions are com- 
puted. 

Intxoduction. Recently, there has been growing interest among chemists and 
physicists in the analytical properties of the Whittaker functions [1], [6] W,,,1/2 and 
M1,1/2. For example, in quantum mechanics, these functions occur in the hydrogen 
atom's Green's function [2]. The derivative of these functions with respect to K occur 
in the atom's generalized Green's function [4]. The latter Green's functions are of 
key importance in calculating the second-order physical properties of the atom [5]. 
In this communication, we wish to report some practical methods of computing 
the partial derivatives W,, and Mn, i.e., 

(1) W,, = [0 W.,112(Z)/0K]K.-., [M9MK.12(Z)1 =K]K- 

These quantities have been given [1], [4] only in the case of n = 0, 1. We treat 
the general situation here. 

To begin with, we note the infinite series representation [7] for WK, 1/2: 

(- Z/2 

WK,, 1/2(Z)- r( K) 

(2) 
x 

I E~~ Ir(k + 1I ) 
(2) X O-o r(-K)(k + 1)! k! 

*[ V(k + 1) + 4(k +2)- lnz - (k+ 1 -K)] 

Direct differentiation of this form, followed by evaluation at K = 1, gives the simple 
result 

(3) e-Z/2(_1 + ZInZ), 

or in terms of Whittaker functions [1], [6] 

(4) W1 = - WO,112(Z) + W1,112(Z) In Z. 

The other partial derivatives can be obtained from W1 with the use of the "recurrence" 
formula 

(5) W +1 = -{Z d Wn/dZ + (n - Z/2)Wn + W., 12}, 
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which is obtained by differentiating a well-known recurrence* relation for the Whit- 
taker function, i.e., 

(6) WK+1,1/2(Z) dWK, /2(Z) + (K - Z/2) WK,1/2(Z)} 

Other "recurrence" formulae can be obtained* from Eq. (12a). The first few deriva- 
tives are given below. 

V1 - -WO,1/2 + W1,1/2 In Z, 

(7) "F"2 WO I/2- 3 WI, I/ 2 + W2,1/2 In Z, 

W3 - -2WO, 1/2 + 4W1,11/2 -5 W2,1/2 + W3,1/2 In Z, 

W4V 6 WO1/2- 1O WI, 12 + 9 W2,1/2 - 7 W3,1/2 + W4,1/2 In Z. 

An alternate and much less tedious approach to this problem begins by noting that 
the differential equation defining WK, 1/2, i.e., 

(8) Z K WK1/2 + { Z2/4 + KZ} WK, 1/2 = 0, 

can be used to obtain the equation 

(9) Z2W7 + {-Z2/4 + nZ } WV = 

Guided by Eqs. (7), we write the solution of the inhomogeneous equation as 
n-I 

(10) Wn = E Cl W1,1/2 + Wn,1/2 In Z. 
1=0 

Determination of the coefficients in Eq. (10) follows by substituting Eq. (10) into 
Eq. (9). We get, with the use of Eq. (8), 

n-I 

(11) E C1(n - l)ZWl,1/2 = (1 Z)Wn,1/2 2Z Wn,1/2 
l1=0 

which can be simplified with the help of the properties 

(12a) ZWn,1/2 = Wn+1,1/2 + 2nWn,1/2 + n(n I)Wn-1,1/2- 

(12b) ZWn/,I2 = (n - Z/2)Wn,1/2 + n(n - I)Wn-1,1/2- 

Using Eqs. (12a) and (12b), Eq. (5) can be rewritten in terms of the Whittaker func- 
tions alone, the linear independence of these functions allowing us to find that 

Cn-I 2n, Cn-2 = (n - 1 )2, 

and 

(13) (1 + 1)(l + 2)(n - 1- 2)Cl+2 + 2(1 + 1)(n - 1- )Cl?1 + (n - 1)Cj = 0. 

The solution of the three-term recurrence equation is easily found [3] and is 

* Since Whittaker functions satisfy three-term recurrence relations, alternate recurrence formulae 
can be obtained for WT. Equation (12a) yields the result 

n(n - l1)Wn _1 + (2n - z)TVW + TVn+l = -2 - (2n - 1)Wn-,; 

however, there is no special advantage inherent in this equation over Eq. (5). This is especially true 
since a closed form for Wf is given in Eq. (15). 
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(14) Cl = (-1) +' (n ! (n + 1) 
1! (n-) 

the final expression for W.,, being 

(15) Wn = (-l)"(n- 1)! E ()( + ) Wl 2 + Wn, 1/2 In Z. 

Finally, we treat the second Whittaker function MK, 1/2. We proceed as in the 
case of the W function, i.e., direct differentiation of the infinite series representation 

e -Z/2 (k + I -K)Zk+l 
(16) MK,l/2(Z) = 

P(i - K) k=0 (k + 1)! k! 

to obtain M1 followed by the use of a recurrence relation. We get, in the case K = 1, 

(17) M1(Z) = MOA',122(Z) - { -y + 1 + g(Z)} IM, 1X/2(Z), 

with g(Z) = Ei(Z) - ln Z, where 7y is Euler's constant (.57721 ... ) and Ei(Z) is the 
exponential integral. The corresponding "recurrence" relation is 

(18) (n + I)Mn+l = Z dMR/dZ + (n - Z/2)Mn + Mn,1/2 - Mn+1,1/2s 

and follows from the recurrence relation [1], [6] 

(19) (K + 1)MK+l,1/2 = Z dMK,112/dZ + (K -Z/2)MK,l/2. 

The first few Mn functions are: 

]R = MO, /2 - (-Y + 1 + g)MI, 12, 

2M2 = MO,1/2 + (3 - eZ)MI 1/2, - (-2,y + 3 + 2g)M2,1/2, 

(20) 3M3 = MO,I/2 + (2- 3e /2)M1,l/2 

+ (5 - eZ)M2,112 - (-3ry + 11/2 + 3g)M3,1/2, 

4M4 = MO,1/2 + (5/3 - 5ez/3)MI 1/2 + (3 - 5ez/3)M2,112 + (7 - e)M3,12 

- (-4y + 25/3 + 4g)M4,1/2. 

Although the differential equation satisfied by Mn has the same form as in the Wn 
case 

Z2An7 + f _Z2/4 + nZ}Mn = -ZMn,1/2, 

the solution has the form 
n-I 

(21) n= , (a, + blez)Ml 1/2 - [VI(n + 1) + g(Z)]Mn,1/2. 
1=0 

As before, we find with help of the recurrence relations [8] for the M functions that 
the a coefficients are given by 

2n- 1 n- I 
an = a_2 =_ 

and 

(22) (n- I - 1)aj+I - 2(n- 1)al + (n + 1- l)ajI = 0. 
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The solution [3] to this equation is just 

1 (ni + 1) 
(23) a - 1) 

n (n 

The b coefficients satisfy the equations 
= 3-2n 

bnI l _ = n bn_2 = - l bo = ?, n- =n(n -1) 
= 

and 

(24) 2(1+ 1)bl+2 -(n + 51 + 1)bl+l + 2(n + 21- I)bi - (n + 1- I)bl-l 0. 

This four-term expression can be reduced by the substitution 

(25) Al = 2(1 + 1)bl+2 - (n + l + 1)bl+1, 

to the simpler three-term form 

(26) Al+, -2A, + Al-, = 0, 

whose solution [3] is 

(27) A = (n + I + )/n. 

The b coefficients are obtained from the inhomogeneous equation 

(28) 21b1+1 -(n + 1)bl = (n + 1)/n, 

and are given by 

(29) b n-1-1 2( +k 

k-0kO (+ n)k 
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